
. RESEARCH PAPER .

SCIENCE CHINA
Information Sciences

January 2015, Vol. 58 012104:1–012104:15

doi: 10.1007/s11432-014-5175-8

c© Science China Press and Springer-Verlag Berlin Heidelberg 2014 info.scichina.com link.springer.com

Improving multiprocessor performance with
fine-grain coherence bypass

WANG Hui1, WANG Rui1∗, LUAN ZhongZhi1, QIAN XueHai2 & QIAN DePei1

1Sino-German Joint Software Institute, School of Computer Science and Engineering,
Beihang University, Beijing 100191, China;

2University of Illinois Urbana-Champaign, Urbana 61801, USA

Received May 15, 2014; accepted July 7, 2014; published online September 10, 2014

Abstract Efficient and scalable cache coherence protocol is crucial to high-performance servers with shared-

memory. The directory-based cache coherence protocol is more desirable than the snooping-based protocol with

respect to the scalability. However, even for the former protocol, scaling to a large number of cores is also

challenging due to the additional area requirements of the directories. We observed that a significant percentage

of the referenced memory blocks were only accessed by a single core (even in parallel applications) which could

be considered as private memory blocks. An intuitive motivation from this observation is that memory blocks

accessed by a single core do not require coherence maintenance. The issue is to identify the private block and

track the change of its access pattern. We propose a novel hardware approach to (1) dynamically identify the

shared memory blocks at the cache block level, and (2) bypass the coherence procedure for the private memory

blocks. This approach increases the effectiveness of the directory-based approach and therefore improves the

system performance. Experimental results showed that, our approach can on an average (1) avoid the coherence

tracking of about 54% referenced memory blocks, (2) reduce the coherence overhead by 77%, (3) avoid 8% L2

cache misses, and (4) shorten the execution time of parallel applications by 13%.

Keywords many-core, cache coherence, private memory block, fine-grain coherence, high performance

Citation Wang H, Wang R, Luan Z Z, et al. Improving multiprocessor performance with fine-grain coherence

bypass. Sci China Inf Sci, 2015, 58: 012104(15), doi: 10.1007/s11432-014-5175-8

1 Introduction

Currently existing technologies have failed to bring performance improvements for single-core processor

to follow Moore’s Law due to energy consumption and wire-delay issues. Therefore, mainstream micro-

processor vendors have turned to thread-level parallelism (TLP) by designing chips with multiple cores,

namely multi-core processors or chip-multiprocessors (CMP), i.e., Godson-3 [1] and Godson-3B [2]. In the

multi-core architectures, each core has one- or multi-level private caches. The coherence of the private

caches is maintained by cache coherence protocols. A scalable cache coherence protocol is crucial for

multi-core processors to integrate many cores on a single chip. Directory-based cache coherence protocol

is adopted by most of current multi-core architectures because of its better scalability as compared to

∗Corresponding author (email: rui.wang@jsi.buaa.edu.cn)

Wang H, et al. Sci China Inf Sci January 2015 Vol. 58 012104:2

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Private

Shared

Cho
les

ky

Bar
ne

s

FF
T

FM
M LU

Oce
an

Rad
io

sit
y

W
ate

rn
s

W
ate

rsp
Blac

ks
ch

ol
es

Fl
ui

da
ni

m
ate

St
re

am
clu

ste
r

Sw
ap

tio
ns

Ave
ra

ge

Figure 1 Fraction of private versus shared blocks.

other coherence protocols. However, the circuit area overhead and energy consumption of the directories

increase with the number of cores and the size of private caches. Therefore the mere enlargement of the

size of the directory would not be a reasonable solution. More efficient coherence protocols are needed

for enabling more powerful multi-core processors.

The conventional directory-based approach keeps tracking all memory blocks in the system, which

incurs significant storage overhead. To alleviate the overhead, the proposed systems in several recent

studies and some commodity systems only track cached memory blocks [3]. Consequently, the directory

entries can be kept in the relatively small set-associative directory cache [4]. However, conflicts might

arise in the directory cache when the cache is full. Once a conflict occurs, the directory cache must evict

an existing directory entry to make room for the new one and send messages to all the victim’s sharers

(i.e. up-level private caches) to invalidate their copies, which increases the private cache miss rate and

affects the system performance. As the directory cannot scale with the increasingly larger system, it

suffers high miss rate (up to 74% as reported in [3,5]), leading to poor directory effectiveness and system

performance.

On the other hand, it has been shown that a significant fraction of the memory blocks allocated to

applications (even parallel applications) are accessed only by a single processor [6]. It is unnecessary for

the directory cache to track those memory blocks for coherence maintenance. We carried out experiments

to identify the memory access pattern. Our experiment results shown in Figure 1 indicate that on an

average about 54% of the accessed blocks are private. Although private blocks do not require coherence

maintenance, the conventional directory cache coherence protocols still keeps track all of them. As a

result, a significant fraction of directory cache entries are wasted for tracking the private blocks, which

considerably reduces the effectiveness of the directory-based cache coherence protocols. A corrective

approach would be to stop tracking the private blocks, such that more directory cache entries can be

used for the shared blocks that really need coherence maintenance. In this way, the directory cache

capacity could be exploited more efficiently.

In this paper, we propose a hardware approach to achieve the aforesaid concept. Our hardware

approach can 1) dynamically identify the shared memory blocks, and 2) bypass coherence procedures for

the private memory blocks. When a memory block is loaded for the first time into the Shared Last-Level

Cache (SLLC), it is assumed to be a private memory block and does not require an entry in the directory

cache to maintain its coherence information. In our approach we add a few additional flags to each cache

block in SLLC to track the change of access pattern of each block so that we can dynamically identify

whether a cache block is shared or not. When a block becomes shared because of accesses by more

than one core, a coherence recovery mechanism is triggered to allocate an entry in the directory cache to

maintain the coherence information of that block. The significance of this approach is that the coherence

information of the private blocks is no longer maintained in the directory cache and the directory cache

can be utilized more efficiently, which improves the scalability of the coherence protocol notably. Our

proposal works at the fine granularity of cache block and can be implemented with hardware by small

modification to the cache structures, which makes it transparent to the operating system and up-level

Wang H, et al. Sci China Inf Sci January 2015 Vol. 58 012104:3

applications.

We verify our approach in a simulated multi-core system with three level caches. Evaluation results

show that on an average up to 54% of the tracking in the accessed memory blocks can be removed from

the directory caches. In consequence, the coherence traffic and the miss rate of the private L2 cache

decreases by 77% and 8% on average, respectively. Incidentally, our approach enables 13% improvement

to the overall system performance.

The rest of the paper is organized as follows. Related work is surveyed in next section. Section 3

discusses the design and implementation of our fine-grain approach to bypass coherence procedures for

the private cache blocks. The method for evaluating our approach and the evaluation results are presented

in Section 4. The cost of our approach is also discussed in that section. Finally Section 5 concludes the

paper by summarizing the characteristics of our approach and proposing some future works.

2 Related work

Several approaches have been proposed to reduce coherence storage overhead by distinguishing shared

and private data. For example, POPS [7] optimizes coherence protocol by placing private and shared

data on different L2 cache slices in NUCA architecture. It uses predictor and the directory information

to identify private data, which also waste the directory entries. SPTAL [8] enables Tagless directory [9],

which uses bloom filters to summarize the tags in a cache set; it uses a full map sharing vector to represent

the cache block’s sharing information. However, it is observed that many bloom filters replicate the same

sharing pattern due to the regular nature of applications. So they exploit this observation to decouple the

sharing pattern then decompress the coherence directory. Zhang et al. [10] claimed that both data access

patterns exhibited by different threads of a multithreaded application and the on-chip cache topology

of the target CMP architecture by modifying the compiler to identify the private data and implement

automatic data layout transformation. Note our approach is orthogonal to theirs, which means they can

be used simultaneously to further reduce the directory’s storage overhead.

Unlike our fine-grain approach, Cuesta et al. [11] exploited the operating system to identify private

and shared pages and degrade coherence for private memory block. They modified the TLB entries in

hardware and the page entries in the operating system. When encountering a TLB miss, the operating

system checks the page table entry to find whether the page is shared or private. Although the motivation

is similar to ours, the granularity of their software approach is limited to virtual page (coarse-grain). In

contrast, we use hardware to detect private and shared blocks at the cache block level, the granularity is

much finer than that of virtual pages. The coarse-grain mechanism treats all the data in a page as an

atomic bulk, which leads to a small portion of private blocks to be identified. The drawback however is

that, once a single data in a private page is identified as shared the whole page needs to recover coherence,

resulting in flooding on the network on chip.

Some previous works performed coarse-grain tracking to reduce unnecessary traffic of broadcast-based

protocols. Cantin et al. [12] proposed Region Coherence Arrays to identify shared regions and filter

unnecessary broadcast traffic. Moshovos et al. [13] proposed RegionScout to avoid sending snoop requests.

Region-Tracker [14] provides a framework to reduce the storage overhead. All these techniques share the

principle of deactivating the coherence mechanism when it is not necessary. However, those approaches

aim at reducing broadcast traffic at coarse-grain granularity, while our proposal works at fine-grain

granularity to avoid allocating directory cache entry for private blocks and does not require coherence

maintenance.

Other works have employed combination of software and hardware to support cache coherence. Zeffer et

al. [15] proposed a trap-based architecture (TMA). TMA uses hardware to detect fine-grained coherence

violations. When a violation occurs, it triggers a coherence trap, and maintains coherence by software

(the coherence trap handlers). Similar to the approach in [11], TMA adds one bit to each TLB entry and

relies on the operating system to detect shared page. The OS-aided approach with TLB modification

requires extra hardware support in each core, which makes implementation difficult. Alternatively, Zeffer

et al. also proposed a simple hardware mechanism which facilitates the software implementation of the

Wang H, et al. Sci China Inf Sci January 2015 Vol. 58 012104:4

C0

Read/Write A
L1 & L2 Cache

miss

Miss, load A from
memory

A.coreId = C0
A.isShared = 0

Cache miss
resolved

Read/Write A
L1 & L2 Cache

miss

Hit, compare coreId
A.coreId(C0) !=

requestor.coreId(C1)
Recover A’s coherence Cache miss

resolved
Read/Write A

Hit && A.isShared == 1
issue request with

coherence

LLC C1

Figure 2 Overview of the fine-grain coherence bypass mechanism. C0 and C1 are cores, LLC is the shared last level

cache.

inter-node coherence protocol [16]. However, the software overhead is high in comparison to our exclusive

hardware approach.

3 A fine-grain coherence bypass approach

In this section we have described the details of our hardware fine-grain coherence bypass approach and

its implementation.

3.1 Overview

Traditional directory cache keeps track of all cached memory blocks. However, as reported in [6], a

significant fraction of the cached memory blocks are private, i.e., they are only accessed by one core

during their lifetime and no coherence issue arises. Therefore, keeping track of the private blocks in

the directory cache entries is futile, which will reduce the effectiveness of directory cache utilization and

affect the system performance. We propose a fine-grain hardware approach to address this issue. The

strategy is to allow the private blocks to bypass coherence protocol so that the private blocks can be

accessed more quickly and more space of the directory cache can be used to maintain coherence of shared

blocks. To achieve this goal, our approach needs to dynamically identify the shared memory blocks at

the cache block granularity and bypass coherence procedure for the private memory blocks. By doing

this, our approach can effectively utilize the space of the directory cache and improve the overall system

performance.

In our approach, upon a cache miss in the Shared Last-Level Cache (SLLC), the requested block is

retrieved from the main memory. The block retrieved from the main memory is assumed to be private

at beginning by default. Thus the directory cache will not allocate an entry to keep track of the private

block, and the coherence protocol for that block is bypassed. In order to distinguish private and shared

blocks we added additional tags to each cache block in SLLC. By testing those tags we could identify

dynamically whether or not a private cache block transforms into a shared one. Once we found a private

block being accessed by more than one cores, the block becomes shared and the coherence recovery

mechanism is triggered. SLLC will send a coherence recover message to the directory cache to maintain

coherence of the shared block.

Figure 2 outlines our mechanism. First, core C0 references the memory block A, since it misses on all

C0’s private caches (L1 and L2), L2 will issue a non-coherent request to SLLC. The non-coherent request

Wang H, et al. Sci China Inf Sci January 2015 Vol. 58 012104:5

Core

i$ d$

L2$

Core

i$ d$

L2$

L3$

Core

i$ d$

L2$

Core

i$ d$

L2$

Directory $

Tag isShared

Tag isShared coreId

L2 cache tag

L3 cache tag

(1 bit)

(1 bit) (log2N bits)

Figure 3 Baseline architecture and cache hardware modification.

also encountered a cache miss on SLLC, which meant that block A has not been loaded from memory, so

we treated block A as a private block. After the requested block A is retrieved from the main memory,

the directory cache will not allocate an entry to store block A’s coherent information. Block A is further

passed to C0s L1 and L2. C0 can keep accessing block A as its private data from its L1 cache. Later on,

core C1 issues a access to the same memory block A, which is missed on all C1’s private caches (L1 and

L2). However, when the non-coherent request issued by C1 reaches SLLC, it encounters a cache hit. By

comparing the initial loader (C0) and the requestor (C1) of block A, SLLC finds that the initial loader

and the current requestor are different, which means that block A becomes shared (Loaded by C0 while

accessed by C1). Consequently, SLLC triggers the coherence recovery mechanism to record block A’s

coherent information in the directory cache. After the recovery process, if C0 references block A again,

it must perform the access according to A’s coherence state by issuing a coherent request. Take MESI

protocol as an example, after the coherence recovery process, block A in both C0’s and C1’s private

cache has the coherence state ‘S’ (shared), if C0 wants to write into block A, it needs to issue a coherence

request to get the write permission before changing A’s coherence state to ‘M’ (modified).

We have explained our approach in detail by walking through each key aspect such as the baseline

architecture and hardware modification (Subsection 3.2), the coherent and non-coherent requests (Sub-

section 3.3), the detection of shared cache blocks (Subsection 3.4), and the coherence recovery mechanism

(Subsection 3.5). Finally, we have discussed some implement issues (Subsection 3.6).

3.2 Baseline architecture and hardware modification

We took a CMP system with three-level cache hierarchy as our baseline system (shown in Figure 3). In

this system, each core has its own instruction cache (i$), data cache (d$) and private L2 cache (L2$). The

L3 cache (L3$) is shared by all cores of the system as an inclusive cache. The baseline system implements

a directory-based MESI cache coherence protocol by an additional directory cache (Directory $). To

simplify the discussion, we assume the instruction and data cache are write-through caches.

From the principle of our approach, we learn that we need to detect dynamically if a private block

resident in L3 becomes a shared one by comparing the identities of the requesting core and the initial

loading core. In order to do that, we need to record extra identity information for each cached blocks so

that this detection can be performed on the fly. Considering the baseline architecture in our study, we

made small modification to L2 and L3 caches structures. As shown in right part of Figure 3, we added a

flag, isShared (one bit in size), to the flag part of each L2/L3 cache block to indicate whether the block

is shared or private. We added another flag field, coreId, to each L3 cache block to record the identity

of the core which loads the cache block initially into L3. The size of the coreId flag is log2 N bits, where

N is the number of cores sharing L3. We also added a comparison logic to L3 to compare the identifier

of the core accessing the block and coreId in L3 access, which is detailed in Subsection 3.6.

3.3 Coherent and non-coherent requests

In our approach, we distinguished coherent and non-coherent requests. We assumed every cache block

loading into the L3 cache the first time is private and is marked so in L2 and L3. The core which

Wang H, et al. Sci China Inf Sci January 2015 Vol. 58 012104:6

Memory
operation

Access
to L2$

Private
block

Access
to LLC

Load from memory
as private block

Hit

Miss

Yes

Perform operation
without coherence

No

Miss

Private
block

Hit

Perform operation
with coherence

Compare
coreId

Equal Coherence
recovery

Perform operation
with coherence

Yes No

Private L2 Cache
Shared L3 Cache

Perform operation
with coherence Not equal

Perform operation
without coherence

Figure 4 Block diagram of memory access of the proposed scheme.

creates a private block can access the private cache block without passing through the coherence protocol

procedure. Since the block is private, it is not necessary to store the coherence information for that block

in the directory. When private L2 cache incurs a memory reference (we will not discuss L1 cache since we

assume it is write-through), as shown in the left part of Figure 4, it issues a lookup process to search the

block. If no block matches, it means that a cache miss occurred, the memory block referenced is going

to be loaded for the first time and assumed to be a private block, and L2 cache will issue a non-coherent

request to L3 cache. On the other hand, if block match occurs, the isShared flag of the matching cache

block will be checked.

If the isShared bit is not set (0 in value), L2 cache performs the access as the cache block is private

to the core, that is, by bypassing the coherence maintenance. However, if the isShared bit is set (1 in

value), L2 cache needs to perform the access according to the coherence state of that cache block and

issues a coherent request.

In our MESI baseline architecture shown in Figure 3, if a private L2 cache block in MESI state ‘S’ (i.e.

the block is shared by other cores and copies present in other cores private cache) is with the isShared

bit set, on a write request, the L2 cache will send a coherent request to the directory cache to get the

write permission. Otherwise, if the isShared bit is not set, indicating that the cache block is private, on

a write request, the L2 cache will perform the write regardless of what the MESI state is.

3.4 Detection of shared cache blocks

Unlike the OS-aided approach in prior works, we used the coreId flag in shared L3 cache to distinguish

between private cache blocks and shared cache blocks. When a L2 non-coherent request arrives at the

L3 cache, if not hit, L3 cache will load the block from memory as a private block, unset the isShared

bit of the corresponding cache block, and fill the coreId flag bits with the request core Id (shown in

Algorithm 1).

If L3 cache hits and the isShared flag bit of the block is not set, a comparison between the coreID

of the cache block and the ID of the requestor core will be performed. If they are equal, it means that

the cache block is still referenced by only one core and remains private. Otherwise, the cache block

is being assessed by more than one cores and becomes shared. On transition from private to shared

in our approach, a coherence recovery action gets triggered that creates an entry for that block in the

directory cache, restores the coherence state of that private block, and converts its state into shared.

From that point on, the block is considered to be shared, and all the following accesses to that block will

be performed according to the coherence protocol.

Wang H, et al. Sci China Inf Sci January 2015 Vol. 58 012104:7

Algorithm 1 Use coreId to detect shared cache blocks

1: if cache miss then
2: Load the block from main memory
3: isShared = unset
4: coreId = requestor′sId
5: #Will not allocate an entry in directory cache
6: else
7: if isShared == unset then
8: if coreId! = requestor′sId then
9: Trigger coherence recovery mechanism

10: isShared = set
11: end if
12: end if
13: end if

Core

i$ d$

L2$

Core

i$ d$

L2$

L3$

Core

i$ d$

L2$

Core

i$ d$

L2$

Directory $

1

2

3

Figure 5 Coherence recovery mechanism.

As an example, in our MESI baseline architecture shown in Figure 3, after core C1 accessing block A,

block A is resident in L3 cache with its coreId = C1 and isShared = 0. When another core, say C3,

issues an access request to block A. The request hits in L3 cache. The L3 cache checks the isShared bit

of block A and finds that isShared = 0 which indicates the block is private. Then it compares the coreId

bits of block A (C1 in value) with the requestor core Id (C3 in value). Since those two core identifiers

are unequal, the L3 cache detects that block A is accessed by two different cores, C1 and C3, and should

become shared. So it triggers a coherence recovery mechanism to record block A in the directory cache,

creating an entry and updating the coherence state.

The right part of Figure 4 illustrates the actions performed on a memory access to shared L3 cache.

3.5 Coherence recovery mechanism

The entry with coherence information in the directory cache is the main difference between private and

shared cache blocks in our scheme. A private cache block is not tracked in the directory cache, that is, no

entry is allocated for recording the coherence state. However, a shared one is tracked. Therefore, when a

private cache block becomes shared, the coherence recovery needs to be performed to maintain coherence

of the shared block.

A coherence recovery process is illustrated Figure 5. When a request from a different core arrives to a

private cache block and transfers the state of the block from private to shared (‘1’), the shared L3 cache

sends a request containing the IDs of the two cores: the one initially accessing the private block and the

one issuing the new request, to the directory cache (‘2’). The directory cache receives this request and

creates an entry for that block for tracking its coherence states and the cores sharing the blocks. After

creating the entry, the directory cache sends a coherence recovery request to the corresponding private

L2 cache (‘3’). Upon receiving the coherence recovery request, the private L2 cache controller sets the

isShared flag of the accessed cache block and recovers its coherence state.

Wang H, et al. Sci China Inf Sci January 2015 Vol. 58 012104:8

TAG DATA TAG DATA
AddressRequestor

coreId

SA SA SA SA

= = = ==

=

INDEX

OUTPUT
hit?

OUTPUT
data

OUTPUT
coreId equals?

TAG CoreID TAG CoreID

= Comparator

Multiplexer

TAG

TAG

Figure 6 coreId compare logic in L3 cache controller.

3.6 Implementation issues

As described before we modified the original cache flag structure to implement our approach. We added

a flag isShared (1 bit) to each block of L2 cache and L3 cache to indicate the sharing status of the block,

and a flag coreId (log2 N bits) to each block in L3 cache to identify the core which initial loads the block

from the memory into L3 cache. We also added a comparator to the L3 cache controller to support coreId

comparison. Figure 6 shows part of the modified L3 cache controller. It is an implementation for a 2-way

associative cache with tag and data arrays. The part with solid line shows the original cache lookup

implementation. When an access request arrives, the address in the request is decoded into three parts:

INDEX, TAG, and OFFSET. The INDEX is used to find the set. Once the corresponding set is located,

all the tags and data inside the set are activated and amplified through the Sense Amplifiers (SA). The

TAG is compared simultaneously with the flags of the two blocks in that set by two comparators. Then

the output of the TAG comparison results determines whether the cache access is a hit or not. If the

access is a hit, one of the blocks (the hit block) of the set is gated to the output of the multiplexer.

OFFSET is used to select the corresponding data within the cache block, which is not shown in the

figure.

The part with dotted line in Figure 6 shows the newly supplemented hardware for implementation of

coreId comparison operation. We use two separate comparators to perform coreId comparison for the

two blocks in the set simultaneously. A multiplexer is used to select the data from one of blocks in the

set. Note that coreId comparison is carried out in parallel with the original TAG comparison, thus no

additional latency introduced. From the above discussion, we know that our hardware coherence bypass

technique does not incur any extra latency to cache access and can be implemented with ease.

Our implementation scheme does introduce extra hardware cost, which comes from both storage space

for extra isShared and coreId flags and the comparison logic added to the L3 cache controller. The

major hardware cost will be discussed in Subsection 4.6.

4 Evaluation

We have evaluated our proposed scheme and its implementation by simulation. In this section, we present

the methodology of the evaluation and analyze the simulation results.

Wang H, et al. Sci China Inf Sci January 2015 Vol. 58 012104:9

Table 1 System parameters

Component Parameters

CMP 32 core

Core frequency 2.0 GHz

Core block size 64 bytes

Instruction cache 32 KB, 2-way, 2 cycles, 32 MSHRs

Data cache 32 KB, 4-way, 2 cycles, 64 MSHRs

Private L2 cache 512 KB, 8-way, 9 cycles, 64 MSHRs

Shared L3 cache 8 MB, 16-way, 15 cycles, 128 MSHRs

Directory cache 256 KB, 4-way

Coherence protocol MESI

Memory access latency 80 ns

Table 2 Benchmarks and input sizes

Benchmarks Input size

SPLASH-2 (9)

Barnes 16 k particles

Cholesky Input file tk23.O

FFT 256 k points

FMM 16 k particles

LU 512×512 matrix, 16×16 blocks

Ocean 258×258 ocean

Radiosity -batch -room

Water-nsquared 512 molecules

Water-spatial 512 molecules

PARSEC (4)

Blackscholes in 16K.txt

Fluidanimate in 100K.fluid

Streamcluster simmedium

Swaptions 32 swaptions, 10 000 simulations

4.1 Methodology

The cycle-accurate simulator SESC1), which is able to model a wide set of architectures, is adopted in

simulation of our proposed approach. The target system on which we model and simulate the proposed

scheme is a directory-based coherent multi-core processor. The main parameters of the target system are

shown in Table 1. Our proposed approach is implemented and evaluated upon this system. A variety of

parallel workloads are selected from two benchmark suites, (SPLASH-2 [17] and PARSEC [18]), as the

workload to drive the simulation models. The benchmarks and the size of their parameters are listed in

Table 2.

4.2 Fine-grain detection of the private blocks

Our approach is based on the fact that a significant amount of the memory blocks accessed during parallel

program execution are private (see Figure 1). The more private blocks detected, the more coherence

overhead can be avoided and the less space in the directory cache would be required to maintain the

coherence for the accessed blocks. Some prior works have detected private blocks at a page granularity

(coarse-grain). With the coarse-grain approach, a page containing both private and shared blocks or

containing only private blocks read by multiple cores will be considered as shared; while all blocks within

that kind of page will be treated as shared blocks. Consequently, the coarse-grain approach can only

detect a small portion of private blocks. In the extreme case when a page contains only one shared

1) SESC: http://sesc.sourceforge.net.

Wang H, et al. Sci China Inf Sci January 2015 Vol. 58 012104:10

Pr
iv

at
e

bl
oc

ks
 r

at
e

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Cho
les

ky

Bar
ne

s

FF
T

FM
M LU

Oce
an

Rad
io

sit
y

W
ate

rn
s

W
ate

rsp
Blac

ks
ch

ol
es

Fl
ui

da
ni

m
ate

St
re

am
clu

ste
r

Sw
ap

tio
ns

Ave
ra

ge

Figure 7 Fraction of detected private blocks.

N
or

m
al

iz
ed

 c
ac

he
 m

is
s r

at
e 1.0

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Cho
les

ky

Bar
ne

s

FF
T

FM
M LU

Oce
an

Rad
io

sit
y

W
ate

rn
s

W
ate

rsp
Blac

ks
ch

ol
es

Fl
ui

da
ni

m
ate

St
re

am
clu

ste
r

Sw
ap

tio
ns

Ave
ra

ge
Figure 8 Normalized L2 cache miss rate (the miss rate of the baseline system is 1).

block, the entire page will be treated as shared page. But things may get worse, if one page is detected

as shared, all the blocks in this page need to be checked for coherence. These coherence actions will

cause a traffic bursty both in the network on chip (NoC) and directory cache. Our proposal adopts a

different approach. It uses special hardware to support detection of the private blocks at block granularity.

Theoretically, all private memory blocks can be identified. Figure 7 shows the fraction of the memory

blocks detected by our approach to be private during benchmarks program execution. Comparing with

the data in Figure 1, we can find that our approach can identify all private blocks, that is, about 54% on

average, which is impossible for other coarse-grain approaches. Hence, our fine-grain approach is more

efficient in identifying private blocks.

4.3 L2 cache misses

As discussed before, in the cache coherence scheme that uses the directory cache, if a conflict (i.e., multiple

cache blocks map to the same entry location in the directory cache) occurs in the directory cache, it will

invalidate the existing directory entry and send coherence messages to the sharers of the block (the local

caches which contain copy of the memory block) to invalidate the shared copies. In other words, the

cached block in the core caches and private L2 caches is evicted because of entry conflict in the directory

cache instead of conflict in the data cache. This certainly increases the cache miss rate.

With our approach, the directory cache does not need to track private blocks, which leaves more space

for entries of the shared blocks and alleviates the contention for directory cache entries. Consequently,

less entry evictions will occur because of conflict in the directory cache and fewer data blocks will be

invalidated from the core local data cache and L2 cache. In this paper we only discuss L2 cache since we

assume core caches are write-through. As a result, the L2 cache miss rate is reduced. Figure 8 shows the

ratio of the overall L2 cache miss of our approach to the overall L2 cache miss of the baseline system.

We can see that by using our hardware-supported coherence bypassing approach which does not track

private blocks in the directory cache, about 8% of L2 cache misses can be avoided on average.

Wang H, et al. Sci China Inf Sci January 2015 Vol. 58 012104:11
N

or
m

al
iz

ed
 c

oh
er

en
ce

 tr
af

fic 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Cho
les

ky

Bar
ne

s

FF
T

FM
M LU

Oce
an

Rad
io

sit
y

W
ate

rn
s

W
ate

rsp
Blac

ks
ch

ol
es

Fl
ui

da
ni

m
ate

St
re

am
clu

ste
r

Sw
ap

tio
ns

Ave
ra

ge

Figure 9 Normalized coherence traffic.

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Cho
les

ky

Bar
ne

s

FF
T

FM
M LU

Oce
an

Rad
io

sit
y

W
ate

rn
s

W
ate

rsp
Blac

ks
ch

ol
es

Fl
ui

da
ni

m
ate

St
re

am
clu

ste
r

Sw
ap

tio
ns

Ave
ra

ge
Figure 10 Normalized execution time with respect to the baseline system.

The coherence overhead is also measured. In fact, as our approach incurs less directory cache eviction

and cache coherence maintenance, the traffic caused by coherence message transmission is also reduced.

Figure 9 shows the normalized coherence traffic of our approach with respect to the baseline system. We

can see from Figure 8 that the coherence traffic is drastically reduced, about 77% on average.

4.4 Application execution time

Reduction in cache miss rate and lower coherence protocol overhead (i.e., lower access latency because

of coherence bypassing and lower coherence traffic) has very positive effect on application execution

performance. Figure 10 shows the normalized execution time of our benchmark programs with respect

to that on the baseline system. On average, the execution time of our approach is 13% shorter than the

referenced baseline system, which proves that the proposed scheme can improve application performance

significantly. We also use the Non-Parametric Test introduced in [19] to test our speedup, this method

validate our speedup with a confidence of 0.95.

In addition, we evaluated our system under different system configurations. The parameters we ad-

justed include the capacity of L2 and L3 caches and the number of cores. In our experiments, the L2

size takes the value of 128 k, 256 k, and 512 k. The capacity of L3 cache is set to 512 k, 1 M, 2 M, 4 M,

8 M, 16 M, and 32 M. The number of cores is from 4 cores to 64 cores that doubles in every successive

experiment. FFT is used as the benchmark. The experiment results are shown in Figure 11.

Figure 11 (a) and (b) show the execution time of FFT while changing the size of L2 and L3 cache,

respectively. From the results we can tell that our approach outperforms the baseline system in all cache

size settings with a constant gain in execution time, while changing L2/L3 cache size has little influence

to FFTs execution time in both proposed and baseline systems. The reason is that FFT has a relatively

small working set which can fit well to the smallest cache size setting and increase in the cache size

does not bring much benefit in performance improvement. The gain obtained by our approach mainly

Wang H, et al. Sci China Inf Sci January 2015 Vol. 58 012104:12

14
15
16
17
18
19
20
21

128 k 256 k 512 k
14
15
16
17
18
19
20
21

512 k 1 M 2 M 4 M 8 M 16 M 32 M

14

18

22

26

30

34

4 8 16 32 64

Baseline Fine-grain coherence bypass

4 8 16 32 64

(a) (b)

(c) (d)

49.00%

48.00%

47.00%

46.00%

45.00%

44.00%

43.00%

42.00%Pe
rc

en
ta

ge
 o

f
sh

ar
ed

 b
lo

ck
s

FF
T

’s
 e

xe
cu

tio
n

tim
e

(s
)

Baseline Fine-grain coherence bypass Baseline Fine-grain coherence bypass

FF
T

’s
 e

xe
cu

tio
n

tim
e

(s
)

FF
T

’s
 e

xe
cu

tio
n

tim
e

(s
)

Figure 11 FFT’s execution time versus the size of L2/L3 and the number of cores. (a) L2 size; (b) L3 size; (c) core

number; (d) core number.

comes from coherence bypassing in accessing the privates blocks, which is constant because the number

of private blocks does not change with the size of the cache.

Figure 11(c) shows the effect of changing the number of cores. In this case, the performance gain of

our approach is no longer constant. When the number is small (4 cores for example), our approach gets

a large gain (23.3 s versus 33.8 s). While increasing the number of cores, the performance gain decreases

and eventually becomes stable (14.6 s versus 16.2 s at 64 cores). The reason for that phenomenon is

a little bit subtle. It is to be noted that our criterion for classifying private and shared blocks is that

a private block will only be accessed by a single core. When the system consists of a small number

of cores, the working data set will be partitioned into a few subsets. A large portion of the working

set will be allocated to and accessed by one core. The number of private blocks will be large because

they are accessed by only one core according to our criterion. So more block accesses will bypass the

coherence procedure and involve lower latency. When the number of cores increases, the working set will

be partitioned into a larger number of subsets, some of the subsets will be accessed by more than one

cores. This results in the increase of the number of shared blocks detected. Consequently, fewer blocks

will be considered as private and the benefit obtained by coherence bypassing decreases. We can learn

this effect very clearly from Figure 11 (c) and (d). Though the total execution time of FFT is decreasing

because of higher computing power when there is increase in the number of cores, the performance gain

of our approach diminishes for the reason explained above.

The directory is only needed to track the shared blocks, thus the directory cache size could be reduced

while obtaining similar performance. The bars in Figure 12 labeled as DC, DC:2 and DC:4 represent

three configurations with a full, a half and a fourth of the baseline directory cache size respectively. We

can see from the figure that our mechanism allows us to reduce the size of the directory cache to half

of the original size while maintaining the similar application execution time (on average) of the baseline

system.

4.5 Energy consumption

Our mechanism has been able to reduce the energy consumption. The energy consumed can be split

into two parts: the dynamic energy and the leakage energy. The dynamic energy is mainly consumed by

Wang H, et al. Sci China Inf Sci January 2015 Vol. 58 012104:13

DC DC:2 DC:4

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e 1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

Cho
les

ky

Bar
ne

s

FF
T

FM
M LU

Oce
an

Rad
io

sit
y

W
ate

rn
s

W
ate

rsp
Blac

ks
ch

ol
es

Fl
ui

da
ni

m
ate

St
re

am
clu

ste
r

Sw
ap

tio
ns

Ave
ra

ge

Figure 12 Execution time normalized to the baseline system. DC, DC:2 and DC:4 stand for directory caches with their

size divided by 1, 2, and 4, respectively.

2 4 8 16 32 64 128 256 512 1024
Number of cores

1.60%

1.40%

1.20%

1.00%

0.80%

0.60%

0.40%

0.20%

0.00%Pe
rc

en
ta

ge
 o

f
to

ta
l o

n-
ch

ip
 c

ac
he

s

Figure 13 Storage cost for extra flags.

the cache access and on-chip network traffic. As discussed above, our mechanism could reduce the cache

misses and network traffics, thus reduce the dynamic energy. The leakage energy is directly proportional

to the reduction in execution time, which could be achieved through our mechanism simultaneously. With

respect to directory cache, its leakage energy reduction depends on the application’s execution time and

its size. Thus, we can reduce its leakage energy consumption when the directory cache is only half of the

size as in the baseline system.

4.6 Hardware cost

The hardware cost of our approach consists of two parts: the storage cost for storing the extra flags and

the extra hardware logic in L3 cache controller. In our proposal the structures of the L2 and L3 caches

are modified to include additional flags, that is, the isShared flag added to every L2 and L3 cache block

and the coreId bits added to every L3 cache block. The total storage cost can calculated by the following

formula (in bits):
SL2 ×N + SLLC

Sblock
× 1 +

SLLC

Sblock
× log2 N. (1)

In the formula, N is the number of cores, SL2 and SLLC is the size of private L2 cache and shared

L3 cache respectively, while Sblock represent the cache block size. By applying the formula to our 32

core baseline system, the storage cost for extra flags was found to be 128 KB, which is about 0.52%

of the total caches (all private L2 caches and the shared L3, regardless of L1) capacity. For a system

consisting 1024 cores, each core has a 256 KB private L2 cache, and the shared L3 cache is of 512 KB, the

storage cost as per our approach is about 11.5 MB, which is only 1.5% of the total on-chip cache capacity

and acceptable for modern many-core processor design. The storage cost of our approach is depicted in

Figure 13. The storage cost can be further reduced by adopting other mechanism such as bloom filters in

Wang H, et al. Sci China Inf Sci January 2015 Vol. 58 012104:14

implementation, or combining with the coherence state (i.e., use ‘I’ state to indicate a block is private),

which will be our future research work.

The second part of cost for implementing our scheme is the extra hardware in the L3 cache controller for

detecting the shared blocks. Using the implementation scheme described in Subsection 3.6, the hardware

cost involves mainly comparators and multiplexers. For a 32-core system with 16-way L3 shared cache,

we need sixteen 5-bit comparators and a 16-way multiplexer to implement the coreId comparison logic,

the hardware overhead is relatively small and acceptable compared to the original L3 cache controller

implementation.

5 Conclusion

In order to improve the performance of multicore processors that adopt directory-based cache coherence,

we propose a novel hardware-supported approach for fine-grain coherence bypassing. Our approach

is based on the fact that a large percentage of memory blocks are accessed by only one core during

their lifetime and can be treated as private blocks requiring no coherence maintenance. By dynamically

distinguishing private and shared blocks, we are able to bypass the coherence procedure when accessing

the private memory blocks, which not only reduces the access latency, but also lowers the cache miss

rate. In our approach the directory cache no longer allocates entries for the private blocks for coherence

purpose, so more entries of the directory cache can be allocated to the shared blocks. This also improves

the scalability of the directory-based cache coherence protocol. The overall performance of the multicore

processor adopting our approach can be improved significantly. Our experimental results show that, on

average, the proposed approach can avoid coherence tracking for 54% of accessed memory blocks, reduce

the coherence traffic overhead by 77%, removes 8% L2 cache misses, and shortens the execution time of

benchmark programs by 13%.

A few issues could be addressed to extend our scheme further. First, the current proposal considers

only unidirectional transition of the block state, that is, from private to shared. Once a block is found to

be shared, it will remain that state even though later on it may be accessed by only one core again. If we

could detect when a block returns to private from the shared state, coherence bypassing can be resumed.

Second, the isShared flag has some overlap in function with the flag in the coherence protocol like MESI.

It might be merged with the original flag to result in a more integrated new coherence protocol. The

storage space required for extra flags can be reduced. Third, mechanisms such as bloom filters can be

introduced in implementation of our scheme to further reduce the hardware cost. The aforesaid topics

will be taken up for our future studies.

Acknowledgements

This work was supported by National High-tech R&D Program of China (863) (Grant No. 2012AA010902),

and National Natural Science Foundation of China (Grant Nos. 61073011, 61133004, 61202425). We thank the

reviewers for their critical and expert comments that help us to improve the paper.

References

1 Hu W W, Wang J, Gao X, et al. Godson-3: a scalable multicore RISC processor with x86 emulation. IEEE Micro,

2009, 29: 17–29

2 Hu W W, Wang R, Chen Y J, et al. Godson-3B: a 1 GHz 40 W 8-core 128 GFlops processor in 65 nm CMOS. In:

Proceedings of the 58th IEEE International Solid-State Circuits Conference (ISSCC’11), San Francisco, 2011. 76–78

3 Marty M R, Hill M D. Virtual hierarchies to support server consolidation. In: Proceedings of the 34th Annual

International Symposium on Computer Architecture (ISCA’07). New York: ACM, 2007. 46–56

4 Gupta A, Weber W D, Mowry T. Reducing memory traffic requirements for scalable directory-based cache coherence

schemes. In: Proceedings of International Conference on Parallel Processing (ICPP’90). New York: Springer, 1990.

312–321

Wang H, et al. Sci China Inf Sci January 2015 Vol. 58 012104:15

5 Marty M R. Cache coherence techniques for multicore processors. Dissertation for the Doctoral Degree. Madison:

University of Wisconsin-Madison, 2008

6 Hardavellas N, Ferdman M, Falsafi B, et al. Reactive NUCA: near-optimal block placement and replication in dis-

tributed caches. In: Proceedings of the 36th Annual International Symposium on Computer Architecture (ISCA’09).

New York: ACM, 2009. 184–195

7 Hossain H, Dwarkadas S, Huang M C. POPS: coherence protocol optimization for both private and shared data. In:

Proceedings of International Conference on Parallel Architectures and Compilation Techniques (PACT’11), Galveston,

2011. 45–55

8 Zhao H Z, Shriraman A, Dwarkadas S, et al. SPATL: honey, I shrunk the coherence directory. In: Proceedings of

International Conference on Parallel Architectures and Compilation Techniques (PACT’11), Galveston, 2011. 33–44

9 Zebchuk J, Srinivasan V, Qureshi M K, et al. Tagless coherence directory. In: Proceedings of the 42nd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO’09). New York: ACM, 2009. 423–434

10 Zhang Y R, Ding W, Liu J, et al. Optimizing data layouts for parallel computation on multicores. In: Proceedings of

International Conference on Parallel Architectures and Compilation Techniques (PACT’11), Galveston, 2011. 143–154

11 Cuesta B A, Ros A, Gmez M F, et al. Increasing the effectiveness of directory caches by deactivating coherence

for private memory blocks. In: Proceedings of the 38th Annual International Symposium on Computer Architecture

(ISCA’11). New York: ACM, 2011. 93–104

12 Cantin J F, Lipasti M H, Smith J E. Improving multiprocessor performance with coarse-grain coherence tracking. In:

Proceedings of the 32nd Annual International Symposium on Computer Architecture (ISCA’05). New York: ACM,

2005. 246–257

13 Moshovos A. RegionScout: exploiting coarse grain sharing in snoop-based coherence. In: Proceedings of the 32nd

Annual International Symposium on Computer Architecture (ISCA’05). New York: ACM, 2005. 234–245

14 Zebchuk J, Safi E, Moshovos A. A framework for coarse-grain optimizations in the on-chip memory hierarchy. In:

Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’07). Washington:

IEEE Computer Society, 2007. 314–327

15 Zeffer H, Radovi Z, Karlsson M, et al. TMA: a trap-based memory architecture. In: Proceedings of the 20th Annual

International Conference on Supercomputing (ICS’06). New York: ACM, 2006. 259–268

16 Zeffer H, Hagersten E. A case for low-complexity MP architectures. In: Proceedings of the 2007 ACM/IEEE Conference

on Supercomputing (SC’07). New York: ACM, 2007. 10–16

17 Woo S C, Ohara M, Torrie E, et al. The SPLASH-2 programs: characterization and methodological considerations.

In: Proceedings of the 22nd Annual International Symposium on Computer Architecture (ISCA’95). New York: ACM,

1995. 24–36

18 Bienia C, Kumar S, Singh J P, et al. The PARSEC benchmarks suite: Characterization and architectural implications.

In: Proceedings of International Conference on Parallel Architectures and Compilation Techniques (PACT’08), Toronto,

2008. 72–81

19 Chen T S, Chen Y J, Guo Q, et al. Statistical performance comparisons of computers. In: Proceedings of the

18th IEEE International Symposium on High-Performance Computer Architecture (HPCA’12). Washington: IEEE

Computer Society, 2012. 1–12

